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ABSTRACT

Recently, there has been much interest in using virtual reality (VR)
tracking data to authenticate or identify users. In this paper, we
present one of the first investigations of how different combinations
of VR input devices (e.g., headset, dominant hand controller, offhand
controller) and their spatial representations (e.g., position and/or
rotation via Euler angles, quaternions, or 6D) affect identification
accuracy. To facilitate this investigation, we conducted a user study
(n= 45) involving participants learning how to assemble two distinct
full-scale constructions. Our results indicate that the availability of
more tracked devices improve identification accuracies for the same
assembly task, but only the headset affords the best accuracies for a
similar task. Our results also indicate that spatial features involving
position and any rotation representation yield better accuracies than
either alone. Finally, we demonstrate that first-order derivatives can
be used to obfuscate user identities for privacy concerns.

Index Terms: Human-centered computing—Virtual reality; Secu-
rity and privacy—Privacy protections

1 INTRODUCTION

There have been several works recently that investigate the identi-
fiability of virtual reality (VR) users based on properties of their
biomarkers. Some works, such as Pfeuffer et al. [15], focus on an
authentication model, where the user proposes their identity, and the
system verifies that they are indeed that person. Other works, like
those by Miller et al. [7] and Moore et al. [10] look at the question
of passive identifiability. That is, given a person’s biomarkers data
in a population, can they be identified afterwards from a new sample
of their VR usage data.

While the question of identifiability has been explored in several
contexts, recent work by Liebers et al. [5], examines identifiability
within a gameified context. Other environments, such as the one used
by Asish et al. [1], are built as educational experiences, while some
are developed specifically to elicit identifiable motions like one used
in a paper by Liebers et al. [6]. In work by Mustafa et al. [12], the
authors recognize that their approaches may yield different results
when applied to a different context.

We expand upon a shortcoming of prior works by providing an
analysis into the identifiability of users across two separate VR
training sessions, where both samples are captured within a single
hour span of time. Prior work by Miller et al. [7] found very high
identification rates, they were between single-session samples of
data. The work by Moore et al. [9], on the other hand, showed lower
identification rates, but between sessions collected a week apart,
introducing potential confounds due to the participants’ mental state,
clothes, physical health, and other potential changes. By collecting
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data within the same period of time, but separate VR sessions, we
can isolate and begin to understand to what degree identifiability
diminishes as a result of exiting and reentering VR.

In this work, we choose a simple training task as our ecologically
valid environment since this domain has seen expanded use as of
late [18]. We developed a virtual environment to train users how
to construct simple objects out of a set of toy pipes and connectors,
allowing us to emulate a simple assembly task. By using a pre-
scribed set of instructions that the user had to replicate, we reduce
the likelihood that our within-session models overfit to features of
the participant’s experience, because we know that all participants
completed the same steps in the same order for the same tasks.

Using this training task, we conducted a study with 45 partici-
pants, yielding 1.7 million frames of data over more than 5 hours. As
far as research on identifiability with VR experiences this amounts
to less than the 60 participants of data Moore et al. [9] had, and
far fewer than the 511 participants of the work by Miller et al. [7].
Unlike those works, however, our informed consent allows us to
publish this dataset to make it openly available for future research.

Finally, we conduct 4 machine learning experiments to exam-
ine the identifiability of this data, moderating the inclusion of data,
its representation and the models, yielding results for 1176 total
conditions. We choose to examine only the machine learning mod-
els Random Forest (RF), Gradient Boosting Machine (GBM), and
k-nearest neighbors (kNN) rather than deep learning models due
to their reduced likelihood of overfitting. In our best-performing
within-session RF model, we find over 95% accuracy, but that same
condition drops in accuracy to around 46% when trained on one
session and evaluated on another. We also examine a set of featuriza-
tions based on the 1st order time derivative of the data and find it to
perform moderately well, but with a different set of data inclusion.

In this paper, we will discuss some works related to our efforts,
describe virtual environment and the experimental methodologies,
discuss our findings, and finally conclude with the limitations of
this work and some future directions. The primary contributions
presented herein are:

1. An analysis of identifiability between VR sessions within a
short span of time.

2. An exhaustive exploration of data inclusion and representation
conditions and how they affect identifiability.

3. We provide a novel dataset featuring high-framerate capture of
the tracked devices across two VR sessions for 45 participants.
A dataset containing all data used in this paper will be made
available at GitHub: [LINK REDACTED FOR REVIEW]

2 RELATED WORKS

2.1 Identification and Authentication with Eye-tracking
Several commercially available HMDs for augmented or virtual re-
ality affort eye-tracking. Often the hardware necessary for this is
included as a means of collecting user input or improving the hard-
ware performance through techniques like foveated rendering. As
this stream of data has become more available, several researchers
have begun exploring its usefulness as a means to identify or authen-
ticate users.
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Table 1: A comparisons of the input features used by related works. Each letter under a given paper indicates a condition that was evaluated in
that paper consisting of the data for each row in which the letter appears. The chart also shows what kinds of classifiers each work explored as
well as the number of participants, and the highest accuracy attained by their best-performing classifier among the explored representations.
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In recent work by David-John et al. [2], the authors recognize
that while eye-tracking data can be useful as a means of input,
it also runs a heightened risk of allowing systems identify users,
for example, by correlating a users’ data across multiple accounts.
They propose a privacy-preserving means of streaming eye-tracking
data by gatekeeping at the API level. Their approach was capable
of reducing identifiability from 85% to approximately 30% while
preserving a system’s ability to use gaze data for input like foveated
rendering.

In another recent work by Liebers et al [6], the authors make
use of eye-tracking features and HMD orientation and provided
participants with a stimulus designed to elicit smooth pursuit head
and eye movements. These movements were tracked by logging
the reported HMD Euler angles, as well as the pupil position. After
preprocessing to determine additional eye-tracking events such as
saccades and pursuits, The authors then investigate both kNN as
well as a set of 10 Deep Learning Neural Network approaches.
Ultimately the authors found that inclusion of HMD-based data
increased accuracy of their ML model from 45% to 90%, as well as
their best-performing deep learning model from 96% to 100%.

Expanding on the number of tasks examined, Tricomi et al. [17]
present a pre-print investigating the identifiability of participants in
both VR and AR tasks. The participants were exposed to 5 types of
tasks in the AR condition and 7 types of tasks in the VR condition.
They make use of automated systems to determine salient features
of the raw data, then use machine learning to attempt to identify
and profile their participants. The authors found 96% identifiability
accuracy.

Olade et al. [13] also examined similar body and eye tracking
features, but for both continuous identification as well as authen-
tication. They used a data set of 15 participants, and investigated
various attack types could one could be conducted and what the risk
was among their participants. Ultimately, their accuracy was 98.6%.

Finally, one more paper that investigates identifiability with the
inclusion of eye-tracking data by Asish et al., [1] focused exclusively
on eye-tracking data. This paper has VR session divided into 4 sepa-
rate experiences and examines identifiability across those sessions.
The authors also train their models on 3 of the 4 experienced sessions
and find 98% overall accuracy with their deep learning models.
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2.2 Identification and Authentication without Eye-
tracking

While eye-tracking has been incorporated in multiple HMDs, many
headsets do not support it as a form of input. Several works have
investigated identifiability or authentication by making use only of
the sensors that provide the tracking needed for a virtual reality
experience. The benefit to restricting oneself to this set of data is
that the results are applicable to a broader range of hardware than
only those that afford eye-tracking.

Mustafa et al. [12] explore authentication in a VR experience
making use of only features derived from the orientation of the
HMD. In their work, they generated authentication models that gave
equal-error rates around 7%, showing feasibility in such an approach
for authenticating in a scenario with 23 users. One caveat pointed out
by the authors is that their results were task-specific due to encoding
features of the virtual environment, and so authentication in another
environment would require the creation of new models which may
perform differently.

In recent work by Miller et al. [7], the authors presented a study
involving 511 participants with a virtual environment that displayed
360◦ video clips with questionnaires presented between. They made
use of only the positions and orientations of the controllers and
head-mounted display for passive identification of users. They con-
ducted an ablation study examining the removal of subcomponents
of tracking data and found that removal of the HMD Y value (which
is strongly correlated with height) resulted in the largest drop in
identification accuracy.

Schell et al. [16] also investigate identifiability on motion from a
restricted set of data points. In this pre-print, the authors investigated
identifiability by using the open Talking with Hands dataset [4].
Schell et al. examined creating head-relative values for the hand
position and orientations, as well as their time-derivatives from this
conversational dataset. This subset of the data was chosen as it
corresponds to the tracking data that a typical room-scale system
affords. They found that with majority voting on increasingly long
test sequences, they were ultimately able to attain 100% accuracy
with several of their explored models. While the data this analysis is
conducted on is from in-person human-human conversational dyads
outside of VR, the authors suggest that their results further contribute
to the body of research showing potential in the use of this data for
identifying individuals in VR experiences.

In another recent work by Liebers et al. [5], the authors investigate
the identifiability of users performing two different tasks in VR. In
their study, they had 16 participants perform repetitions of prescribed
tasks over two days. By training their models on data from a single
day’s session and evaluating on a different day, they ensured that
their models weren’t encoding data that may be session-specific.
They found that for their, they were able to attain accuracy up to
90% with a motion mapped to a normalized human body model
with a Recursive Neural Network based on LSTMs and a Multilayer
Perceptron.

Another work that investigated identifiability by Moore et al. [9]
examined the passive identification of users across a week delay
between sessions in an interactive training environment. They found
that the identification accuracy across sessions was greatly reduced
from around 90% to near 32%. The authors hypothesize a few
reasons for this finding including variability in the presentation of
the VR experience, the potential for the user to be in a substantially
different physical and mental state, and wearing different clothing.
The authors additionally examined using velocity-based features and
found that those further reduced identification accuracy.

Finally, Pfeuffer et al. [15] also investigate identification between
sessions with a minimum 3-day period between exposure. The ex-
amined identification making use of features derived from the head,
hand, eye, among 22 participants. They also looked at 4 different
types of simple interactions to identify users with. With multiple

Figure 1: Both builds made use of the same pieces, in the same
locations. They consisted of two of each color pipe (red, green, blue,
yellow), two elbow connectors, three three-way connectors, and 12
screws. Also visible in the middle is the metallic key used to turn
the screws to secure connections.

Figure 2: The completed structures. Build A is shown on the left, and
build B on the right. Screws do not appear as an artifact of the way
the screenshots were captured, but were visible in the application.

samples of each atomic interaction, they were able to achieve 44%
identification accuracy between sessions.

3 USER STUDY

For this study, we designed a system in Unity to train a user how
to build an arbitrary object using a toy set of pipes and connectors.
We identified two structures to teach and created applications that
corresponded to those structures. Throughout this paper, we will
refer to these structures/applications as ”A” or ”B”. Each arbitrary
object made use of the same set of pieces, as shown in Figure 1. The
steps for the assembly order was prescribed according to Table 2,
with users beginning with a connector, attaching a pipe, then using
the key to screw in a screw to secure the connection.

In order to know which piece to attach, where, and with what
orientation, we employed an animated interaction cue to guide the
user to complete the current step [3]. This interaction cue was
presented as a transparent copy of either the controller representation
or the held object, and smoothly animated from its current location
to where it needed to be. If an object was currently being held
and needed to be attached, the system used the copy of the object.
Similarly, if an object needed to be grabbed, it would show an
animation from the closest controller that wasn’t currently holding
any object.

Additional pipes and connectors were then added to the existing
structure with participants having to use a screw to secure each

Build 1 2 3 4 5 6 7 8 9 10 11 12

A Y1 B1 L1 Y2 T2 G1 R1 L2 G2 T3 R2 B2
T1 T1 B1 L1 Y2 T2 T2 R1 L2 G2 T3 T3

B Y1 B1 R1 T2 G1 R2 L1 G2 T3 B2 L2 Y2
T1 T1 T1 R1 T2 T2 R2 L1 G2 T3 B2 L2

Table 2: The order of steps for builds A and B. The letters R, G, B,
and Y represent red, green, blue, and yellow pipes respectively, T
and L represent Three-way and Elbow joints, respectively.
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Table 3: An overview of the conditions compared in this paper. Explored conditions include the 0th and 1st order time derivative, within- and
between-session predictions, the inclusion and exclusion of individual trackers, the type of data used from those trackers, and the model used.

Trackers Used Included Data Model Type Session Time
Derivative

Head DomH OffH
Head DomH
Head OffH

DomH OffH
Head
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×

Position Euler
Position Quaternion
Position SixD
Position

Euler
Quaternion

SixD

×
RF

GBM
kNN

×
A → A
B → B
A → B
B → A

× 0th
1st

connection progressively. Upon starting the application, the pieces
were frozen in place with disabled physics and unable to be grabbed
until they became relevant for the current assembly step. Whenever
a piece or the key fell off the table, its position was reset to the
starting position after a brief period. Likewise, if the structure fell
off of the table, its position would be reset to the middle of the table.

In addition to the two primary A and B assembly applications,
a third with additional scaffolding was built in order to train par-
ticipants how to interact with the VR system. This version of the
application featured audio and text detailing which buttons to press
on the controller, how to grasp an object, and had participants assem-
ble a simple model consisting of fewer pieces than the two sessions
used for this evaluation.

3.1 Materials
We made use of the HTC Vive Pro Eye VR system to run this
study. Retraction cables connected to the ceiling were attached to
the cable of the head-mounted display to ensure free movement
of the participants and reduce the chance of a trip hazard. To run
the benchmark application, we made use of a PC with an NVidia
GeForce RTX 2080 graphics card. The application ran at a consistent
90fps.

3.2 Procedure
The following experiment was approved by the University Institu-
tional Review Board. A link to a pre-survey was made available
through university mailing lists. The pre-survey first ensured that
people responding to our survey were eligible according to our in-
clusion criteria. If so, they then were then asked for their consent
to participant, and finally the pre-survey collected their demograph-
ics. Participants were then invited to schedule a 1 hour period of
time to complete the in-person portion of the experiment. Upon the
participant’s arrival, the experimenter collected informed consent.
Participants were then exposed to the tutorial application, followed
by a break with a questionnaire. After completing the first question-
naire break, participants were either exposed to the A or B assembly
task, depending on their cohort to ensure counterbalancing of or-
der of presentation. Participants then had an additional break with
questionnaires, followed by the assembly task they had not yet done.
Participants concluded with a final set of exit questionnaires.

For each questionnaire break, the experimenter would assist the
participant in removing the head-mounted display, collect their con-
trollers, and administer questionnaires presented on a 2-dimensional
monitor using a mouse and keyboard as input.

3.3 Participants
A total of 45 participants were recruited via university mailing lists.
All participants (20 females, 25 males) had normal or corrected-to-
normal vision with contacts, which were worn through the duration
of the study. The mean age of our participants was 22.1±4.2, and 3
were left-hand dominant.
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OffH 88.7% 87.9% 88.4% 64.4% 71.0% 72.8% 71.3%

Head 85.1% 85.0% 86.0% 53.2% 42.9% 40.7% 44.2%
DomH 66.6% 67.0% 67.4% 41.7% 46.7% 45.7% 45.7%

OffH 71.2% 72.2% 71.9% 39.4% 49.9% 45.7% 47.8%

Table 4: Within-session identification accuracy for Random Forest,
with position and orientation data, trained and evaluated with data
from session A.

4 MACHINE LEARNING EXPERIMENT 1

In this machine learning experiment, we analyze the identifiability
of motion data within each session. That is to say that we make
use of data from a given session for training our models, and some
retained data for evaluating their accuracy. Several works explore
the identifiability of users within a single VR session, such as that
by Miller et al. [7].

For each session the participants experienced, the system tracked
the position and orientation of the HMD and controllers at a rate of
90Hz. Because the application was built in the Unity Engine for the
HTC Vive Pro Eye, this was the framerate at which the application
executed its event loop, and thus the rate at which position and
orientation data was provided to Unity to ensure the application
updated the rendered view for the HMD.

Across all analyzed conditions, we considered the inclusion or
exclusion of each tracked object (the HMD on the head, the con-
troller in the dominant hand, and the controller in the non-dominant
hand), as well as inclusion of position or orientation. Although the
inclusion and exclusion of each individual value from each tracked
object could be toggled independently (such as including or exclud-
ing the Y component of position), the combination of these features
would result in an untenable search space. We choose to moderate
the inclusion and exclusion of data by tracked object to allow us
to explore how each tracked object is contributing to identifiability.
Likewise, we moderate the inclusion of position and orientation data
so we can evaluate if either are too noisy for the models to fit well.

Beyond the inclusion of orientation data, we also considered
three orientation representations: Euler angles, quaternions, and a
six-dimensional representation. While the authors are not aware
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DomH +
OffH 86.0% 87.3% 85.9% 59.6% 71.8% 73.8% 70.8%

Head 84.7% 81.3% 83.8% 48.0% 37.4% 36.9% 40.1%
DomH 61.6% 61.2% 59.7% 32.2% 47.3% 49.2% 49.4%

OffH 71.0% 71.7% 70.4% 40.1% 56.0% 56.2% 51.8%

Table 5: Within-session identification accuracy for Random Forest,
with position and orientation data, trained and evaluated with data
from session B.

of a six-dimensional representation being applied specifically to
data collected in VR experiences, this rotation representation has
recently shown promise for machine learning models because of
the lack of discontinuities among continuous data [19]. We also
examined Euler angles and quaternions as alternatives due to their
ready availability in the Unity engine and to help with comparisons
with prior works [8] [12].

The models we chose to evaluate were k-Nearest Neighbors, Ran-
dom Forests, and Gradient-Boosting Machine. These have been
used previously by Miller et al. [7] effectively for identifying par-
ticipants. Because of the large number of hyperparameters we are
already evaluating across we choose to make use of default intrinsic
parameter values for each model in the Scikit-Learn library [14].
These values were k=3 for kNN, 100 estimators for Random Forest,
and 100 estimators and a learning rate of 0.1 for GBM. For kNN,
training data was normalized and the same scaling function was
applied to the evaluation data to avoid issues with the scales along
different axes. We chose not to examine deep learning models due
to the likelihood of overfitting to the relatively short samples of data
from each participant.

The full set of hyperparameter conditions explored in this paper
are described in Table 3. For this section, we discuss the results of
moderating the trackers used, included data, model type and the first
two values in the session column.

For a given set of conditions, we computed a set of per-second
feature vectors. This feature vector described per-second statistics
of each available field in the data by calculating the minimum, max-
imum, mean, median, and standard deviation. As an example, if
head position was included in the raw data, a corresponding fea-
ture vector would include these statistics for the x, y, and z values.
These feature vectors from each session were then partitioned into 10
subsessions. For the within-session identifiability analyses, we eval-
uated 20 Monte-Carlo shuffles of the data by training on 9 random
subsessions and evaluating the accuracy on the remaining subsession.
While the subsessions retained for evaluation for each participant
varied within shuffles, the shuffles themselves remained consistent
across conditions. The models would predict a participant ID label
per 1-second feature vector provided. These 1-second level predic-
tions were aggregated together to yield a final predicted label for a
given participant’s evaluation data by selecting the most-predicted
label.

For positional data, within-sessions, we found our best perfor-
mance among conditions including both the head and at least one
hand, as well as incorporating both positional and rotational data
(Figure 4,5). For session A, this was 95.8% accuracy with the RF
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Table 6: Between-session identification accuracy for Random Forest,
with position and orientation data, trained on A and evaluated on B.
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Table 7: Between-session identification accuracy for Random Forest,
with position and orientation data, trained on B and evaluated on A.

model, all three trackers, using both position and 6-dimensional
rotations. The same condition performed the best with the GBM
model at 95.7% accuracy, and the kNN model at 90.1%. For session
B, the best performance was also with all three trackers, but with
position and quaternion rotations, at 95.7%. Again this condition
was the best for GBM as well at 94.0% accuracy, for kNN the best
was all three trackers with position and 6-dimensional rotations at
87.4% accuracy.

5 MACHINE LEARNING EXPERIMENT 2
For our next machine learning experiment, we investigate the
between-session accuracy of these models. This is motivated by
some prior works that indicate that the task of identifying an individ-
ual across multiple sessions is more difficult than within one session.
Miller et al. [7] mention it as a limitation of their study, and while
Liebers et al. [5], Moore et al. [11], and Pfeuffer et al. [15] all make
use of datasets involving multiple sessions, the sessions are spaced
at least a day apart, introducing some additional variability due to
the change in state of the participant.

For our Between-session Identifiability analyses, we evaluate
identification accuracy across the same set of variables as the previ-
ous section. We moderate the inclusion of trackers, the position and
orientation data of those trackers as well as the orientation represen-
tation, and model type, as shown in Table 3. In this section, we now
look at training models on one session and evaluating on another.

For this analysis, we developed the same per-second feature vec-
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54.2% 59.0% 64.1% 41.3% 45.7% 52.4% 62.0%

Head +
DomH 48.6% 52.7% 60.3% 37.4% 40.4% 46.4% 54.8%

Head +
OffH 44.8% 47.9% 53.8% 30.7% 36.2% 42.8% 48.0%

DomH +
OffH 49.4% 56.0% 59.6% 39.3% 40.8% 51.0% 54.9%

Head 29.6% 32.2% 36.1% 18.3% 24.4% 28.1% 28.4%
DomH 42.4% 45.1% 49.1% 25.8% 32.3% 38.6% 43.7%

OffH 36.1% 45.1% 50.1% 27.7% 26.7% 37.7% 44.8%

Table 8: Within-session identification accuracy for Random Forest,
with velocity and angular velocity data, trained and evaluated on A.

tors as previously described. Our models were then trained on the
entirety of a given session and evaluated on the entirety of the other
session, aggregating predictions at the second level to create a pre-
diction for that session. This approach was chosen as it would be
an ecologically valid approach for identifying users without their
knowledge.

Looking at the between-session positional data, we now find our
best performances still incorporated positional and rotation data,
but now only made use of the head tracker (Table 6,7). For the
models trained on A and evaluated on B, the best performance was
head tracker, position, and either Euler or 6-dimensional rotational
representation, at 75.6% for RF, 73.3% for GBM, and 75.6% for
kNN. For the models trained on B and evaluated on A, the head
tracker and position with 6-dimensional rotation performed at 82.2%
for RF, and 80% for GBM. For B to A, kNN performed best with
head, position and Euler angles at 71.1%.

6 MACHINE LEARNING EXPERIMENT 3
Beyond creating the feature vector by using the collected data as
it was, we also considered computing its first-order time deriva-
tive, since velocity-based features have been demonstrated to be
useful when predicting knowledge and performance retention [11].
This tracking data was then aggregated at the one-second level by
computing the minimum, maximum, mean, median, and standard
deviation for each component value, to create a feature vector to
describe that second of motion. Depending on the tracker inclusion
and position/orientation conditions, this per-second feature vector
consisted of between 15 and 135 values.

In this section, we again divided the data from each session into
10 subsessions. We use a similar approach of creating 20 Monte-
Carlo shuffles of the subsessions, allowing the models to train on 9
of them per participant, and evaluating their identification accuracy
on the retained ones. This is essentially the same procedure as
presented in Section 4, but now conducted on the feature vectors
that were generated using the time-derivative data instead of the raw
data. Again, RF and GBM performed on par with each other, and
overall better than kNN, so we choose to show the results for RF
(Table 8,9), with the full set of results available in the supporting
material.

Examining the within-session velocity data, we found our highest
identification accuracies among models involving six-dimensional
rotation representations and incorporating at least two trackers.
Across all models, for both the A session and B session, the best-
performing conditions were those that made use of position and
6-dimensional rotations across all three trackers, yielding 64.1%
accuracy for session A and 66.2% accuracy for session B. GBM
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58.7% 63.6% 66.2% 46.3% 53.0% 59.7% 64.2%

Head +
DomH 51.8% 54.2% 58.3% 35.1% 41.7% 48.4% 54.6%

Head +
OffH 50.9% 55.7% 60.8% 36.9% 41.4% 50.9% 56.3%

DomH +
OffH 52.1% 58.7% 60.9% 36.7% 44.6% 53.4% 56.9%

Head 30.2% 31.9% 36.6% 20.2% 22.3% 25.6% 31.2%
DomH 41.6% 44.2% 46.4% 24.1% 27.4% 39.1% 43.2%

OffH 40.6% 49.0% 49.9% 26.2% 29.1% 40.1% 42.7%

Table 9: Within-session identification accuracy for Random Forest,
with velocity and angular velocity data, trained and evaluated on B.
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28.9% 28.9% 35.6% 17.8% 26.7% 28.9% 33.3%

Head +
DomH 28.9% 24.4% 33.3% 15.6% 20.0% 28.9% 31.1%

Head +
OffH 28.9% 31.1% 24.4% 15.6% 22.2% 22.2% 24.4%

DomH +
OffH 22.2% 22.2% 26.7% 13.3% 17.8% 22.2% 24.4%

Head 33.3% 42.2% 44.4% 15.6% 28.9% 28.9% 33.3%
DomH 20.0% 20.0% 24.4% 15.6% 11.1% 11.1% 24.4%

OffH 24.4% 24.4% 20.0% 11.1% 20.0% 17.8% 15.6%

Table 10: Between-session identification accuracy for Random For-
est, with velocity and angular velocity data, trained on data from A
and evaluated with data from session B.

maxed out at 64.3% for session A and 68.0% for B. Finally, kNN
performed notably worse, with accuracies of 37.2% for A and 40.9%
for B. k

7 MACHINE LEARNING EXPERIMENT 4
Finally, we examine the identifiability of motion data, using the
same velocity feature-vector procedure described in the previous
section, but now between sessions. We conducted this exploration
by allowing the models to train over the entirety of one session from
all participants, then evaluated over the entirety of the other session.
Again, because our models created predictions for each second,
based on each per-second feature vector provided, we aggregate the
predictions, saying that the model ultimately predicted an identity
based on

Finally, when we look at the between-session velocity data, we
find that no conditions exceeded 50% accuracy. Our best-performing
models involved both the position and 6-dimensional representation
of the data, with the head tracker only. For the RF model trained
on session A and evaluated on session B, we found 44.4% accuracy,
and for the RF model trained on B and evaluated on A, this yielded
46.7% accuracy. For that same condition, GBM had an accuracy of
46.7% for A to B. For GBM’s best B to A condition, we see head and
dominant-hand, position and 6-dimensional rotations perform best
at 48.9%. For kNN A to B, Head-only, position and 6D rotations is
best at 31.1%, and no condition performed above 25% accuracy for
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42.2% 44.4% 40.0% 33.3% 31.1% 40.0% 40.0%

Head +
DomH 37.8% 35.6% 42.2% 28.9% 26.7% 28.9% 31.1%

Head +
OffH 26.7% 35.6% 35.6% 17.8% 15.6% 35.6% 40.0%

DomH +
OffH 31.1% 37.8% 28.9% 17.8% 22.2% 28.9% 26.7%

Head 28.9% 35.6% 46.7% 17.8% 17.8% 26.7% 33.3%
DomH 28.9% 26.7% 26.7% 13.3% 15.6% 20.0% 17.8%

OffH 22.2% 26.7% 24.4% 11.1% 11.1% 17.8% 20.0%

Table 11: Between-session identification accuracy for Random For-
est, with velocity and angular velocity data, trained on data from B
and evaluated with data from session A.

B to A.

8 DISCUSSION

8.1 Tracking data from an unspecified task is likely not
sufficient for identifying people against their will with
these machine learning models

Our findings generally show that across the board, it’s feasible to
attain impressive results for identifying participants within the same
task. The results of our analyses also demonstrate, however, that
even when models are provided with substantially more data to eval-
uate over, they still fail to identify participants at nearly the same
level of accuracy when attempting to evaluate over a slightly differ-
ent task. This result is important because it demonstrates that XR
practitioners hoping to develop motion-based authentication should
present users with the same task for encoding and authentication.
Likewise, those hoping to de-anonymize XR usage data should, if
possible, train their models on identified samples of users perform-
ing parts of the tasks in their target data set, because even similar
tasks yield between sessions yield worse results.

Furthermore, it is worth noting that in an ecologically valid
between-task identification scenario, where one knew the labels for
session A, but not B, one might attempt to use the best-performing
classifier in their labelled training data (i.e., all three trackers with
position and quaternion rotations, which performed at 96% accu-
racy). This condition applied between sessions yields relatively poor
performance, however, at only 48.9% accuracy.

8.2 More tracked devices yields better identification ac-
curacy within the same task

As shown in Tables 4 and 5, across all position and orientation
conditions, the inclusion of additional trackers yielded better accura-
cies. This suggests that within a given task and session, none of the
tracked objects contributed data that caused the models to overfit to
the training subset. Perhaps unsurprisingly, we also note that of the
2-device and 1-device conditions, those that included the head per-
formed better than those without, when position was included. This
is aligned with the results of the ablation results presented by [7], in
which removal of the features related to the head Y-value resulted in
the greatest drop in identification accuracy.

8.3 More tracked devices does not yield better identifi-
cation accuracy across similar but slightly different
tasks

As shown in Tables 6 and 7, the inclusion of trackers other than
the head yielded worse accuracies, suggesting that they contributed
to noise in the training of the model. We were focused on the
ecologically valid potential privacy issue in which a malicious actor
has a sample of labeled, trained data. Because of our study design,
we are unfortunately unable to separate out if this may have been due
in part to the model encoding physiological features of the user such
as their height, as opposed to features related to their environment
as indicated by [16].

8.4 Using position and orientation generally yields
higher identification accuracy

Across both the within- and between-session conditions, the in-
clusion of both position and orientation generally yielded higher
identification accuracy than using exclusively one or the other. These
results indicate that broadly when including the data from a given set
of trackers, it appears to be helpful to make use of both the position
and orientation tracking, if afforded by the system.

Interestingly, we find that in many of our conditions, the six-
dimensional representation proposed by Zhou et al. [19] not to
perform significantly better. We posit that this may be partially
a result of the manner in which we aggregate positions. Because
each per-second feature vector was considered in isolation, moments
where the quaternion or Euler values would have discontinuities was
outnumbered by the samples of data without such discontinuities. It
is possible that this representation may be more useful for a more
time-dependent approach such as LSTM.

8.5 Identities can be partially obfuscated by encoding
the velocities of tracked devices instead of positions

While one might expect that using feature vectors generated from
the first-order derivative to potentially encode data more specific
to users and yield classifiers that are better capable of generalizing
across tasks, we found that between-task performance was generally
worse with the velocity-based features than with the positional ones,
diminishing from 82.2% to less than 50% for Random Forest. While
this is still much more than the random likelihood of a correct
guess, this diminishing suggests that while velocity-based features
may have some use for identification, they may need a specific
featurization outside of the scope of this paper to yield accuracies
on par with our positional data.

8.6 Limitations
In this work, we choose not to optimize some of the hyperparam-
eters that are intrinsic to the models explored (such as the depth
of trees in Random Forest, or k in kNN). This decision is due in
part to the scope of the explored hyperparameters in this work re-
quiring the evaluation of 1176 (2∗4∗7∗7∗3) models, resulting in
further hyperparameter exploration to be untenable. Additionally,
our approach categorized each feature vector in isolation, not taking
advantage of the temporal nature of our data.

Another limitation is that we examined the data from two similar
but distinct tasks. It’s possible that our results could be different with
different builds or with fundamentally different tasks. We believe
that this is a somewhat representative example of identifiability
between similar tasks in which the user is performing a task that
is prescriptively defined as a sequence of steps, but varying results
may be found for environments in which the interactive objects
are different, appear in different locations, or lack the instructional
context our application contains.

Further, while our total set of data may appear large (1.7 million
samples), this represents the data of 45 users and a total of a little
more than 5 hours of time. If we were to make use of Deep Learning
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methods on this amount of data, it would be likely to overfit to the
individuals. While this amount of data is less than some previous
work like that by Miller et al. [7] or Moore et al. [11], it is more than
several of the other works exploring VR identifiability, and will be
made available as a resource for future research.

One final limitation to address is the arguable presence of a con-
found due to differences in the builds in addition to the participants
doffing and donning the VR equipment. Some existing work, such
as that by Asish et al. [1] makes use of multiple scenes and contexts
without removal of the headset. With the between-session portion of
this work, our focus was on identifiability between two individual
VR sessions. Because our context is in an ecologically valid training
scenario, we anticipated learning affects to moderate participants’
motions through the instructions. This would still result in unique
behavior from session to session, so we opted for two unique, but
slightly different builds.

8.7 Future Work

This work demonstrates that training a classifier within a session
of data can overfit to features specific to the task a participant is
experiencing, and that using this data from one unspecified task may
be insufficient to identify participants in other tasks against their
will. In our dataset, participants were exposed to one session in VR,
exited VR, then re-entered for the other task. Exploring multiple
tasks within a single VR session, and alternatively the same task,
longitudinally across multiple sessions will be an important next
step for improving our understanding of the variability in tracking
data across experiences and sessions. A further logical next step for
this work would be to design additional experiences, and examine
to what degree training classifiers on samples of data from multiple
distinct tasks can improve accuracy in identifying people in unseen
tasks.

9 CONCLUSION

In this paper, we explored the identifiability of participants when
presented with two distinct but similar tasks in VR. We first looked
at identifiability within sessions and we examined the inclusion
and exclusion of data across several conditions by tracked object
as well as the kind of data contained therein. Our search over
this space of data should help form an understanding of what is
contributing to accuracy and what is overfitting for different training
and testing conditions. Further, by examining temporally close data
from two VR sessions, we hoped to expand our understanding of
identifiability as it relates to variables specific to a given session.
While we found that within a VR session, increasing the sources of
data generally improved the accuracy of the models identifications,
we found some sets of data to be contributing data that overfits to
the session, thus resulting in worse accuracy. Finally, by exploring a
velocity representation, we find different sets of data to be useful for
identification, warranting further exploration.
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